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Abstract

Acoustic sensor arrays will likely play a prominent role in the U. S. Army’s Objective Force for
applications such as target detection, identification, and location. Generally, these array systems perform
direction finding by determining the wavefront angle of arrival from the phase differences across the
array. However, random fluctuations in the atmosphere may strongly distort the wavefront of a sound
wave. The resulting random variations in the wavefront’s orientation and intensity are perceived as
fluctuations in the apparent bearing angles and strength of the source. As such, the error in estimating
the wavefront’s angles of arrival (AOAs) will increase as the propagation distance increases and/or the
strength of the turbulence increases. The Cramer-Rao lower bound (CRLB) is the statistical lower bound
of the mean-square error between an estimator and its actual value. The CRLB is calculated from the
probability likelihood function of the received signal. Previous formulations have modeled the probability
likelihood function of a sound wave propagating through atmospheric turbulence as a zero-mean complex
Gaussian distribution. The zero-mean assumption implicitly treats the case of strong scattering. In this
paper the received signal is modeled as a complex Gaussian random variable with a deterministic mean,
thereby generalizing the treatment to both strong and weak scattering. The CRLB of the azimuthal
and elevational AOAs are calculated for both a plane-wave and a spherical-wave propagating through
atmospheric turbulence with fluctuations described by a von Kármán spectrum. A single monochromatic
source is considered and a line-of-sight propagation path is assumed.

Introduction

Acoustic sensor arrays have long been used in underwater applications such as target detection, identifica-
tion, and location. Recently, there has been much interest within the U. S. Army to use atmospheric acoustic
arrays to perform the same functions on land. Acoustical direction-finding and tracking systems will likely
play a prominent role on the future battlefield, where situational awareness will be a key factor affecting
the survivability of light- and medium-weight forces. Acoustic arrays are beneficial as: they are relatively
inexpensive and small in size; they operate passively; obscurants, such as smoke, do not effect detection;
and a line-of-sight propagation path is not necessary. Generally, these systems perform direction finding by
determining the wavefront angle of arrival (AOA) from the phase differences across the array. Sound waves
are strongly affected by the environment, whether it be oceanic or atmospheric. Both media are random in
nature and may strongly distort the wavefront. The resulting random variations in the wavefront’s orienta-
tion and intensity are perceived as fluctuations in the apparent bearing angles and strength of the source.
As such, the error in estimating the wavefront’s AOA will increase as the propagation distance increases
and/or the intensity of the turbulence increases. (These acoustic phenomena are analogous to scintillation
and quivering of optical images, as are often observed above a roadway on a sunny afternoon.) The net
effects of these distortions can have a substantial impact on direction-finding in both the atmosphere [1, 2]
and the ocean [3, 4].

The performance of a sensor array may be quantified by calculating the mean square error (MSE) between
the estimated parameter (such as the AOA) and its actual value. The lower bound of the MSE is the Cramer-
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Rao lower bound (CRLB), which is calculated from the Fisher information (FI) [5, 6]. There already exists
much work in the open literature that characterizes the CRLB of array processors in the presence of noise
only, (e.g., see Ottersten et al. [7] and the references therein). Recently, Song and Ritcey [8] developed
a model that directly incorporates the effects of random media on acoustic waves into the calculation of
the CRLBs of AOA estimates. Specifically, they considered propagation in an ocean channel with random
inhomogeneities having a Gaussian spatial correlation. Using the general framework of Song and Ritcey,
Wilson [9] calculated the performance bounds on AOA estimates using various correlation functions that are
representative of atmospheric turbulence.

Song and Ritcey [8] and Wilson [9] modeled the received signal as a complex, zero-mean, Gaussian
random variable. By assuming that the signal of interest had a zero-mean, they implicitly treated the case
of waves strongly scattered by the turbulence. A strong scattering event occurs when the turbulence is
sufficiently strong, and/or the wavefronts propagate a sufficient distance, so that the phase of the received
signal at each sensor is completely randomized. However, in many practical problems the variance of the
index-of-refraction fluctuations is sufficiently small, or the propagation distance is sufficiently short, that the
waves have only been weakly scattered when they arrive at the array. A weakly scattered wave has a mean
component significantly larger than the standard deviation of the real and imaginary parts of the signal.

Moreover, in the previous work of Wilson [9], the FI was calculated assuming that the only unknown was
the wavefront AOA (azimuth only). The source-receiver propagation distance, turbulence parameters, and
signal-to-noise ratio (SNR) were implicitly assumed to be known. In a real scenario, this information may
not be available. A more relevant analysis would therefore use a multivariate formalism.

This paper provides an analysis of the CRLBs of AOA estimates for a passive sensor array operating in
a turbulent medium. The zero-mean assumption is avoided, so that the model is valid for both strong and
weak scattering. To capture scattering by eddies in both the energy-containing and inertial subranges, a
von Kármán spectrum is used for the turbulence [10]. Furthermore, the analysis from Ref. [9] is expanded
to include the propagation distance, SNR, turbulence parameters, and phase of the source in the unknown
parameter set. The extent to which the estimates of the AOAs will degrade when they are simultaneously
estimated with other parameters is determined by calculating the coupling between the estimates.1

Three-dimensional (3D) propagation is considered for an incident plane wave and spherical wave. For
simplicity a single monochromatic source and a line-of-sight propagation path are assumed. A brief review
of the phenomology of atmospheric turbulence is given in Section 1. The theoretical model is developed in
Section 2 and the Cramer-Rao lower bound is formulated in Section 3. Results are given in Section 4 and
conclusions are drawn in Section 5.

1 Phenomenology

The atmospheric boundary layer generally refers to the layer of air directly above the earth’s surface in
which effects, such as heating, cooling, and friction, are felt on a short time scale (less than a day). This layer
is usually one-half a kilometer to several kilometers thick. Fluctuations in momentum, heat, or matter may
result in turbulent motions that have scales on the order of the depth of the boundary layer or less. Some
characteristics of turbulent flows are: they have purely rotational motion; they are three-dimensional; and
they are dissipative and thus require energy to be sustained. When a tangential force exists at a boundary, a
shear turbulence occurs. Buoyant turbulent motion may result, e.g., from the thermal heating of the ground
which induces an upward motion of the air. Turbulent motion may be characterized by an inner scale length
and an outer scale length (L). In between the inner and outer scales lies the inertial subrange, characterized
by a cascade of energy to progressively smaller scales. (See, e.g., Reference [11].)

1The theoretical treatment in this paper applies to the AOAs, which represent the orientation of the wavefront normal when
the sound reaches the array. For propagation in the atmosphere, the average horizontal (azimuthal) AOA is usually very close
to the actual angle of bearing (AOB) of the source, thereby making acoustic arrays well suited to determining the horizontal
position of a source. However, for the vertical (elevational) AOA, the situation is quite different. Atmospheric refraction may
bend the soundwaves upward or downward, thus interfering with the ability to determine the AOB. As such, most existing
acoustic ground sensors do not attempt to determine the elevation of a near-ground source.
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Figure 1: Turbulence-induced distortion of acoustic wavefronts impinging on a sensor array.

As an acoustic wavefront propagates from the source to the sensor array, it is distorted by random
fluctuations in the atmosphere. A coherence loss results when the phase and amplitude relationship between
the sensors becomes random. Let the separation between the sensors be d , and let L be the characteristic
length of the largest turbulent eddies. For d � L the wavefronts will be smooth and nearly planar when
arriving at the sensor array. But if d � L, the wavefronts will have a rough and random appearance when
observed on the scale of the array. These cases are depicted in Fig. 1. In both cases, there is a coherence
loss between the sensor signals.

Knowing L is essential to designing a sensor array. Typical values of L during the daytime range between
50 m (for strong winds and little solar heating of ground) and 500 m (for sunny afternoons with light winds).
Most sensor arrays employed by the Army have an aperature of about 1m. Therefore, the case d � L
generally applies. It is also generally desirable to space array elements less than one-half a wavelength apart
to prevent spurious source images (e.g., spatial aliasing effects).

2 Theoretical Model

Calculation of the FI requires a priori knowledge of the probability density function (PDF) of the received
signal. In this section a theoretical model that incorporates the effects of turbulence on the source signal
is developed to describe the PDF of the received signal. Let us define the notation that shall be used
throughout this paper: [·]∗ denotes the complex conjugate, [·]T the transpose, [·]† the Hermitian adjoint
(complex conjugate transpose), and 〈·〉 the ensemble average.

Consider an acoustic array with N sensors. We assume that the signal at each sensor results from: (1) the
wave that has propagated from the source of interest with φ and θ as the azimuthal and elevational angles
of arrival, respectively, and (2) random noise. Let p(φ, θ, t) and n(t) be the time-varying complex envelops
of the two contributions, respectively. These column vectors have N elements, one element corresponding to
each sensor. The source contribution is time dependent because of the random turbulent effects. The noise,
which is also time dependent, may result from wind noise or other competing sources. The total received
signal is

s(φ, θ, t) = p(φ, θ, t) + n(t) . (1)

Let us assume that the source and the noise signals are uncorrelated and that the noise signals at the
sensors are mutually uncorrelated with equal variance. Let us further assume that the noise component
has a Gaussian distribution with a zero mean and variance σ2

n. Although exact solutions for the pressure
field of the source and its PDF are unknown, solutions to its first and second moments can be found in the
literature. We therefore approximate that p has a Gaussian distribution with mean µ and covariance matrix
Cp, whose elements are

µi = 〈pi〉 and [Cp]ij =
〈
pip

∗
j

〉
− µiµ

∗
j . (2)



We use the results in the open literature for acoustic wave propagation in a random medium to determine µi

and
〈
pip

∗
j

〉
as discussed in the following section. The total signal s is thus Gaussian distributed with mean

µ and covariance
C = Cp + σ2

nIN . (3)

This signal model, in which the real and imaginary parts are modeled as Gaussian random variables with
equal variances, is reasonable for strong scattering, or for weak scattering, in the presence of strong diffraction
(the Rytov extension region). It is less well suited to situations where both scattering and diffraction are
weak (geometric acoustics), in which case the phase variance dominates the signal behavior [12].

2.1 First and Second Moments: Normal Incidence

The pressure field associated with a sound wave propagating in a moving medium is characterized by a
closed set of fluid dynamic equations. The small angle parabolic equation method may be used to reduce this
set of equations to a single wave equation. The Markov approximation, which assumes that the turbulence
field has vanishing correlation in the direction of propagation, may then be used to obtain the statistical
moments of the sound field in closed form. These approximations are valid in far field, for small scattering
angles, and for L � λ > ` , where λ is the wavelength, and L and ` are, respectively, the outer (integral) and
inner (Kolmogorov) length scales of the turbulence. We use the solution for the first and second moments of
the pressure field as given by Ostashev [10], who generalized the results of [13] and [14] to include fluctuations
in the medium velocity. The solution for the second moment is, however, strictly valid for normal incidence
across two sensors. These results are outlined in the following paragraphs.

By using the small angle parabolic and Markov approximations, one finds that the first and second
moments of the pressure field undergo an exponential attenuation. Consider a sound wave that is propagating
along the x-axis with wave number k, k = 2π/λ. Let r = [x, y, z] be the observation point and r⊥ = [0, y, z]
be its component transverse to k. For x � r⊥, the first moment at r is〈

p(r)
〉
= pH (r) e−γx , (4)

where γ is the extinction coefficient for the first moment and pH(r) is the sound pressure field in the absence
of random inhomogeneities. For a plane wave

pH(r) = p0 ei(k·r+χ) , (5)

where p0 is the pressure amplitude (a real-valued constant) and χ is the phase of the source. Here the
propagation is strictly along the x-axis, therefore pH(r) = p0 ei(kx+χ). For a spherical wave

pH(r) = p0 ei(kr+χ) , where p0 =
Ar0

r
, (6)

and where A is the pressure at r = r0 (A and r0 are real-valued constants). The parabolic approximation
for a spherical wave propagating in free space (used in the solution to the wave equation) is

exp (ikr)
r

≈ 1
x

exp (ikx) exp

(
i
kr⊥

2

2x

)
. (7)

It is the first order approximation in r⊥/x.

The first moment represents the unscattered (deterministic) part of the wavefield. We define the satura-
tion parameter parameter Ω as

Ω = 1− e−2γx . (8)

When γx � 1, the saturation parameter is close to 0, scattering is small, and the signal at a single sensor
exhibits little variability. When γx � 1, Ω ≈ 1, and the scattered part of the field dominates.

Consider now two points near the x-axis, r1 = [x, y1, z1] and r2 = [x, y2, z2], where x � r⊥1 , r⊥2 . The
second moment is 〈

p (r1) p∗ (r2)
〉
= pH (r1) p∗H (r2) e−α(ρ)x , (9)



Figure 2: Coordinate system. The closed circles represent the sensors. For a plane wave, the open circle
represents the point in the plane of the source at which r is normal to the wavefront. For a spherical wave,
the open circle represents the source. The azimuthal and elevational AOAs, φ and θ, are defined with respect
to r̂.

where ρ = r1−r2 is the sensor separation vector (transverse to the propagation direction), α is the extinction
coefficient for the second moment, and pH (ri) is given by Eq. (5) for a plane wave and Eq. (6) for a spherical
wave. [Again the parabolic approximation for a spherical wave propagating in free space, Eq. (7), was used
to obtain this result. It is, however, more convenient to use the expression in Eq. (6). Provided we stay
within the constraints of the approximation, it does not matter which expression we use.] The extinction
coefficients for the first and second moments are related by

γ = α(∞)/2 . (10)

2.2 First and Second Moments: Oblique Incidence

We now wish to derive expressions for the first and second moments for nominally oblique incidence.
Consider a sound wave that is propagating with wave number k, where k is no longer parallel to the x-axis.
Let [·]⊥ and [·]‖ denote the components of a vector transverse and parallel to k̂, respectively. For both a
plane wave and a spherical wave, r is the propagation distance of the wavefront to the center of the array.
However, the definition of the vector r depends upon the case considered: for a plane wave, r is the vector
from the center of the array normal to the plane of the source; for a spherical wave, r is the vector from the
center of the array to the source. A list of vectors and their definitions is given in Table 1. For both a plane
wave and a spherical wave, the azimuthal and elevational AOAs, φ and θ, are measured with respect to the
center of the array, so that r̂ = [cos φ cos θ, sinφ cos θ, sin θ]T. An illustration is given in Fig. 2.

For this analysis we take the first moment at the ith sensor to be

Plane Wave : µi ≈ p0e
i(k·ri+χ)e−γr , p0 = constant (11)

Spherical Wave : µi = p0e
i(kri+χ)e−γr , p0 ≈

Ar0

r
. (12)

For both the plane wave and spherical wave, the phase of the first moment is not modified, but the magnitude
of each is. In other words, we assume that the largest source of variation of the first moment between the
center of the array and the ith sensor is due to the phase not the attenuation. These approximations are
valid provided that for every i and j

Plane Wave : e−γr
‖
i ≈ e−γr

‖
j ≈ e−γr (13)

Spherical Wave :
e−γri

ri
≈ e−γrj

rj
≈ e−γr

r
. (14)

It follows that the saturation parameter, for both a plane wave and a spherical wave, is now

Ω ≈ 1− e−2γr . (15)



Plane Wave Spherical Wave

r = [x, y, z]T Vector from the center of the array nor-
mal to the plane of the source

Vector from the center of array to the
source

x = cos φ cos θ

y = sinφ cos θ Components of r in terms of the azimuthal and elevational angles of arrival φ and θ

z = sin θ

r = |r| Propagation distance of the wavefront to the center of the array

r̂ = r/r Unit vector in direction of r

êr N/A Radial orthogonal unit vector in spheri-
cal coordinates

k
Wave number. |k| = k = 2π/λ, where λ is the wavelength

k = −kr̂ k = kêr

r′i = [x′i, y′i, z′i]
T Vector from the center of the array to the ith sensor

ri = r + r′i As defined Vector from the source to the ith sensor

ri = |ri| As defined Propagation distance of the wavefront to
the ith sensor

r
‖
i = |ri · k̂| Propagation distance of the wavefront to

the ith sensor
r
‖
i = ri

r⊥i = |ri × k̂| Magnitude of the component of ri that is
transverse to direction of wave propaga-
tion

r⊥i = 0

ρij = r′i − r′j Vector between the ith and jth sensors

ρij = |ρij | Distance between the ith and jth sensors

ρ⊥ij = |ρij × k̂| Magnitude of the component of ρij that is transverse to the direction of wave prop-
agation

Table 1: Definitions of vectors and their magnitudes. Physical descriptions are provided when possible.
Refer to Fig. 2.

Strictly speaking, Eq. (9) for the second moment is valid for normal incidence across sensors i and j, i.e.,
when r

‖
i = r

‖
j and hence and hence ρ⊥ij = ρij . For oblique incidence we approximate

Plane Wave :
〈
pip

∗
j

〉
≈ p2

0e
ik·(ri−rj)e−α(ρij) r , p0 = constant (16)

Spherical Wave :
〈
pip

∗
j

〉
≈ p2

0e
ik(ri−rj)e−α(ρij) r , p0 ≈

Ar0

r
. (17)

We are thereby assuming that for every i and j,

α
(
ρ⊥ij
)
≈ α (ρij) (18)

and



Plane Wave : e−α(ρij)r
‖
i ≈ e−α(ρij)r

‖
j ≈ e−α(ρij)r (19)

Spherical Wave :
e−α(ρij)ri

rirj
≈ e−α(ρij)rj

rirj
≈ e−α(ρij)r

r2
. (20)

A careful and consistent treatment of the magnitudes of the moments is necessary to ensure a nonsingular
covariance matrix. The phases of the first and second moments must also be treated consistently to ensure
that the covariance matrix is nonsingular. Because of these approximations, we restrict our investigation to
nominally normal incidence to a planar array for 3D propagation [a linear array for two-dimensional (2D)
propagation].

2.3 Covariance Matrix and Mean

We write the first and second moments in the form

µi = µ̃eiΦi and
〈

pip
∗
j

〉
= p2

0e
−α(ρij) reiΦij , (21)

where we define2

µ̃ = p0e
−γr and Φij = Φi − Φj . (22)

For a plane wave p0 is as defined in Eq. (5) and

Φi = k · ri + χ = k (r + x′i cos φ cos θ + y′i sinφ cos θ + z′i sin θ) + χ ; (23)

and for a spherical wave p0 is as defined in Eq. (12) and

Φi = kri + χ = k
[
r2 + r′i

2 + 2r (x′i cos φ cos θ + y′i sinφ cos θ + z′i sin θ)
]1/2

+ χ . (24)

Thus the elements of the total covariance matrix [Eq. (3)] are

Cii = p2
0 − µ̃2 + σ2

n and Cij =
[
p2
0 e−α(ρij) r − µ̃2

]
eiΦij , i 6= j . (25)

The mutual coherence function (MCF) between the ith and jth sensors is defined to be the positive
square root of

Γ2
ij =

〈
pip

∗
j

〉
〈p∗i pj〉

〈pip∗i 〉
〈
pjp∗j

〉 . (26)

Thus for both the plane-wave and spherical-wave treatments here,

Γij = |
〈
pip

∗
j

〉
|/p2

0 = e−α(ρij) r. (27)

The minimum value of the MCF for ρij →∞ is Γmin = e−2γr.

An advantage to this formulation of the first and second moments for the plane-wave treatment is that
the resulting covariance matrix Cp and mean µ may be written in terms of the MCF matrix Γ, a steering
vector S, and a steering matrix S. The steering vector is defined to be

S =
[
eik·r1 , eik·r2 , · · · , eik·rN

]T
. (28)

The steering matrix represents the phase delay between the sensors due solely to the difference in propagation
length. As S = S ⊗ S†, where ⊗ is the (right) Kronecker product,

Sij = exp
(
ik · ρij

)
. (29)

2Note that we use the convention that µi is the ith component of the vector µ, (i.e., the value of the first moment of the
sound field at the ith sensor), and is given by µi = µ̃eiΦi . In this manner, |µi| = µ̃ and |µ| = µ =

√
nµ̃.



Therefore for an incident plane wave

µ = p0Γ
1/2
min S and Cp = p2

0Γ� S − p2
0ΓminS , (30)

where � is the Hadamard product (element-by-element multiplication).

We may also write the moments for a spherical wave in the same form as Eq. (30), but S and S are
defined from the phases:

S =
[
eikr1 , eikr2 , · · · , eikrN

]T
and S = S ⊗ S† → Sij = exp [ik (ri − rj)] . (31)

Though the meaning of a steering vector and array is lost, these mathematical expressions may be useful for
computational purposes.

2.4 von Kármán Turbulence Model

The extinction coefficients depend on the structure of the random medium. For a plane wave

α(ρ) = 2πk2 [f(0)− f(ρ)] , (32)

and for a spherical wave

α(ρ) = 2πk2

∫ 1

0

[f(0)− f(ρu)] du , (33)

where f is the 2D (or projected) correlation function for the sound-speed fluctuations [10, 15, 16, 17]. For
most random media, including a turbulent atmosphere, α(ρ) initially increases monotonically with increasing
ρ, but when ρ exceeds L, α(ρ) asymptotically approaches a constant value [15]. Since f(ρ) → 0 in the limit
ρ →∞, this constant value is simply 2γ, given by

2γ = 2πk2f(0) = 2ς2k2L , (34)

where ς2 is the index-of-refraction variance. Hence the second moment will initially decrease with increasing
ρ, but will eventually “saturate” at a fixed minimum value.

Typical acoustic sensor arrays employed by the Army have a sensor spacing larger than the height of the
array from ground. As such, the performance of these arrays is affected by the large eddies of the energy-
containing (or source) subranges of the turbulence spectrum. (By contrast, the performance of optical
systems is dependent primarily upon the smaller-scale eddies in the inertial and dissipation subranges.)
The isotropic, homogeneous von Kármán turbulence model describes the inertial subrange of the turbulence
spectrum more realistically than the commonly used Gaussian models, and it still behaves reasonably in the
energy-containing subrange. The von Kármán form for the 2D correlation function is dependent upon the
source of the sound speed fluctuations: a scalar field is induced by temperature or humidity fluctuations and
a vector field is induced by wind velocity fluctuations. The 2D correlation functions for a scalar field fs and
a vector field fv, may be written in the form (see Eq. (49) in Ref. [17] and Eq. (7.112) in Ref. [10])

fs(ρ, ς2, l) =
2ς2l√

π Γ (1/3)

( ρ

2l

)5/6

K5/6

(ρ

l

)
(35)

fv(ρ, ς2, l) =
2ς2l√

π Γ (1/3)

( ρ

2l

)5/6 [
K5/6

(ρ

l

)
− ρ

2l
K1/6

(ρ

l

)]
, (36)

where l = Γ(1/3)L/ [
√

πΓ(5/6)] is a characteristic length scale, Γ(x) is the Gamma function, and Kν(x) is
the modified Bessel function of order ν. The equation for fs in this paper differs somewhat from that of
Ref. [9] due to the manner in which the scalar energy spectrum was defined in that paper. The equation in
this paper is consistent with the more standard definition found in Ref. [10].

The MCF for an incident plane wave is plotted in Fig. 3 as a function of the index-of-refraction variance
ς2 and the characterstic length scale normalized by the wavelength l/λ for both a scalar and a vector



von Kármán spectrum. In presenting the results, it is natural to use normalized length scales, (e.g., r/λ,
d/λ, etc.), as then the coherence has no explicit wavelength dependence. In (a) and (b) the MCFs are
calculated for ρ/λ = 0.5 and r/λ = 500. [For example, a tank has a frequency of roughly 200 Hz. Thus,
as the wavelength is the average sound speed (about 340 m/s) divided by the frequency, λ is roughly 2 m.
Therefore if the tank is at a range of one kilometer, r/λ ∼ 500.] The coherence for both spectra decreases
significantly in the regions where the index-of-refraction variance is large, ς2 ∼ 10−4, and the normalized
length scale is small, 10 < l/λ < 1. In (c) and (d) the same is calculated but for ρ/λ = 3/

√
2. The larger

sensor separation leads to a more rapid decrease in the MCFs as functions of the turbulence parameters. For
both sensor separations the MCF for the vector spectrum is more sensitive to the changes in the turbulence
parameters, and its minimum with respect to the turbulence parameters (for a fixed finite sensor separation
and normalized propagation distance) is smaller than that for the scalar spectrum. [We note that α(ρij)r
is dependent upon the product of ς2r/λ. Therefore, one may view the x-axis in Fig. 3 as a change in the
product of ς2r/λ.] In Fig. 4 the same is plotted but for an incident spherical wave. The function Γmin

(the minimum value of the MCF as a function of sensor separation (ρ = ∞) for fixed propagation distance
and fixed turbulence parameters) is the same for both a scalar and a vector spectrum and for both a plane
wave and spherical wave. It is plotted in Fig. 5. Even though its value is only dependent upon the product
ς2rl/λ2, it is plotted versus the turbulence parameters at r/λ = 500 for ease of comparison with Figs. 3 and
4.

3 Formulation

3.1 Cramer-Rao Lower Bound

Consider the vector parameter Θ = [Θ1, Θ2, ..., ΘN ]T that we wish to estimate. The minimum MSE of
an unbiased estimator Θ̂ about its actual value Θ may be calculated from the Cramer-Rao theorem [5, 6],
which gives 〈

(Θν − Θ̂ν)2
〉
≥
[
J−1(Θ)

]
νν

, (37)

where J(Θ) is the N ×N FI matrix. (An estimator is said to be unbiased if and only if
〈
Θ̂
〉

= Θ.) The FI
is related to the probability likelihood ℘(x; Θ) (PDF of x with Θ as a parameter) by

[J(Θ)]λν = −
〈 ∂2 ln℘(x; Θ)

∂Θλ∂Θν

〉
, (38)

where the expectation value is taken with respect to ℘(x; Θ) and the derivatives are evaluated at the true
value of Θ.

The likelihood function for real parameters of complex Gaussian PDF with covariance matrix Cx(Θ)
and mean µ(Θ) may be written [5]

℘(x; Θ) =
1

πN det [Cx(Θ)]
exp

{
− [x− µ(Θ)]† C−1

x (Θ) [x− µ(Θ)]
}

. (39)

Its corresponding FI is [5]

[J(Θ)]λν = tr
(
C−1 ∂C

∂Θλ
C−1 ∂C

∂Θν

)
+ 2<

(
∂µ†

∂Θλ
C−1 ∂µ

∂Θν

)
, (40)

where the functional dependence has been suppressed. If there are M independent and identically distributed
data sets, then the likelihood function will be the product of M identical distribution functions, and hence
the FI is M times the quantity given in Eq. (40). Suppose there are N elements in the sensor array. Then
C is an N ×N matrix, and µ is a column vector of length N . Let us use the convention that the subscripts
λ, ν ∈ [1, . . . , N ] are the indices on the parameters and that i, j ∈ [1, . . . , N ] are the indices on the elements
of the sensor array.

Let us define σν ≡
√

[J−1]νν . We loosely refer to either σ or σ2 as the CRLB, as the meaning should be



Figure 3: Coherence for an incident plane wave: (a) and (c) are for a scalar von Kármán spectrum; (b) and
(d) are for a vector von Kármán spectrum. All calculations are for r/λ = 500.

Figure 4: Coherence for an incident spherical wave: (a) and (c) are for a scalar von Kármán spectrum; (b)
and (d) are for a vector von Kármán spectrum. All calculations are for r/λ = 500.
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Figure 5: Minimum coherence (ρ = ∞) for von Kármán spectra, Γmin = e−2γr. Calculation is for r/λ = 500.

evident from the units involved. The minimum value of σ2
ν is σ2

ν0
≡ 1/Jνν , i.e., the CRLB when Θν is the

only unknown. As the number of unknowns increases, σ2
ν will increase.

For example, suppose that there are two unknowns. The FI is

J =
[

J11 J12

J12 J22

]
, (41)

as it is symmetric for real unknown parameters. For λ and ν cyclic (i.e., if λ = 1 then ν = 2, etc.)

σ2
λ =

(
Jλλ − J2

λν/Jνν

)−1
= σ2

λ0
(1− ζ12)

−1 (42)

where

ζ12 ≡
J2

12

J11J22
= 1−

σ2
10

σ2
1

= 1−
σ2

20

σ2
2

, 0 ≤ ζ12 ≤ 1 . (43)

Only if J12 = 0 does σ2
λ = σ2

λ0
, and the estimates of Θ1 and Θ2 are said to be uncoupled. As ζ12 increases,

σ2
λ increases from its minimum value of σ2

λ0
, and a degradation of the estimates of Θ1 and Θ2 results. The

quantity ζ12 thus provides a measure of the strength of the coupling between, and hence degradation of,
the estimates of Θ1 and Θ2: if ζ12 = 0, the estimates are uncoupled and the CRLBs retain their minimum
values; if ζ12 � 1, the estimates of θ1 and θ2 are weakly coupled and the CRLBs increase only slightly; and
if ζ12 = 1, the estimates are fully coupled, the CRLBs are infinite, and hence neither Θ1 nor Θ2 can be
estimated. It is therefore advantageous to determine the conditions underwhich the estimates of Θ1 and Θ2

will decouple. If there are more than two coupled parameter estimates, we define the coupling between the
λth and νth parameter estimates to be

ζλν ≡
J2

λν

JλλJνν
. (44)

In this way, we have a measure of the coupling strength between any two given parameters.

3.2 Fisher Information of Theoretical Model

The dependence of the FI on all the unknown parameters except the signal-to-noise ratio has clearly
been established. The SNR is related to the noise variance by SNR = p2

0/σ2
n. It is often useful to express

the SNR in decibels SNRdB, SNR = 10SNRdB/10. For the plane wave case, p0 is a constant, and we treat
the SNR as the unknown. In this way, the exact value of p0 is not needed for the calculation, as the FI
may be renormalized by p2

0. For a spherical wave p0 is dependent upon r, therefore we consider SNR0, the
signal-to-noise ratio at a distance R0, as the unknown. Then σ2

n = (Ar0)2/(SNR0R2
0). By renormalizing the

FI by (Ar0)2, the explicit value of Ar0 is not needed.

The FI may be calculated from Eq. (40) for those parameters we wish to consider as unknowns: φ, θ, χ, r,
l, ς2, or SNR. For a deterministic mean, χ must be treated as an unknown parameter [22, 23, 24]. While the

10 10 



derivatives of the covariance matrix and mean are straight forward, the derivatives with respect to turbulence
parameter l are tedious. For brevity, none of the derivatives are presented here. We may interchangeably
refer to the CRLB of the elevation and zenith, for as they are related by a linear transformation, their CRLBs
are the same. (Linear transformations preserve the efficiency of an estimator [5].)

3.3 No Turbulence

Let us begin by examining the case of no turbulence. In the absence of turbulence

µ = p0

[
eiΦ1 , eiΦ2 , . . . , eiΦN

]T
and C = σ2

nIN . (45)

The elements of the FI matrix are

Jλν =
MN

σ4
n

∂σ2
n

∂Θλ

∂σ2
n

∂Θν
+

2MN

σ2
n

∂p2
0

∂Θλ

∂p2
0

∂Θν
+ 2M

p2
0

σ2
n

N∑
i=1

∂Φi

∂Θλ

∂Φi

∂Θν
. (46)

By setting Jλν = 0, we may determine the conditions underwhich the estimates of Θλ and Θν will decouple.

3.3.1 Plane Wave

Let us consider φ, θ, and χ as unknowns, and r and SNR as knowns. The estimate of χ will decouple
from the estimates of φ and θ for every value of φ and θ if

N∑
i=1

x′i =
N∑

i=1

y′i =
N∑

i=1

z′i = 0, (47)

i.e., if the center of the array is located at the origin. [If r is unknown, the estimate of r will also decouple
from the estimates of φ and θ if Eq. (47) is satisfied.] The estimates of φ and θ will decouple from one
another if

N∑
i=1

y′i
2 =

N∑
i=1

x′i
2 and

N∑
i=1

x′iy
′
i =

N∑
i=1

x′iz
′
i =

N∑
i=1

y′iz
′
i = 0. (48)

Symmetric planar array configurations such as a circular array with sensors placed at equal angular intervals,
or a rectangular grid with sensors placed at the lattice points, meet these requirements provided that the
array is located in the xy-plane and that the array center is located at the origin. (If both r and χ are
unknown, then the quantity χ′ = kr + χ (the phase of the signal at the array center) may be treated as
the unknown, and the same results hold. Nielsen [18] has performed an analysis for a multiple-frequency,
far-field, sine wave signal imbedded in Gaussian noise. The conditions he found for the estimates of the
elevation, azimuth, and phase at the array center to decouple are the same as for the case presented here.
Among the literature which examine array configurations that result in the decoupling of the angle estimates,
Refs. [19, 20, 21] may be of interest to the reader.)

Suppose that the center of a sensor array is located at the origin. Then if the sensors are configured so
that Eq. (48) is satisfied,

1
σ2

φ

= 2Mk2 cos2 θ
p2
0

σ2
n

N∑
i=1

x′i
2 and

1
σ2

θ

= 2Mk2 p2
0

σ2
n

N∑
i=1

(
x′i

2 sin2 θ + z′i
2 cos2 θ

)
. (49)

At θ = π/2, the CRLB of φ is singular. Therefore, such array configurations cannot be used to estimate the
azimuthal AOA of a wave that is propagating along the z-axis. Specifically, a planar array must be located
in the xy-plane in order for Eq. (48) to be satisfied. Thus it cannot be used to estimate the azimuth of a
normally incident wave. Due to the limitations of the turbulence model discussed in Sect. 2.1, we want to
investigate waves that are nominally normal to a planar array. Therefore in the full simulation, the estimates
of the azimuth and elevation will always be coupled as we cannot choose the xy-plane as the array plane.



3.3.2 Spherical Wave

Now let us consider a spherical wave. Suppose that r and SNR are known, and that φ, θ, and χ are
unknown. The estimates of φ and θ will decouple from the estimate of χ for every value φ and θ if

N∑
i=1

x′i
ri

=
N∑

i=1

y′i
ri

=
N∑

i=1

z′i
ri

= 0 . (50)

Therefore, unlike the plane-wave case, there is no simple array geometry that will result in the decoupling
of the estimates of the AOAs from the estimate of the phase angle. The conditions for the estimates of φ
and θ to decouple are also unattainable in practice:

N∑
i=1

x′i
2

r2
i

=
N∑

i=1

y′i
2

r2
i

= 0 and
N∑

i=1

x′iy
′
i

r2
i

=
N∑

i=1

x′iz
′
i

r2
i

=
N∑

i=1

y′iz
′
i

r2
i

= 0 . (51)

It can also be shown that if r is also unknown, its estimate is coupled to that of φ, θ, and χ.

3.4 Turbulence

3.4.1 Plane Wave

Let us now consider a plane wave propagating through turbulence. Unfortunately, this case does not lend
itself to being evaluated analytically. We assume that the wave is propagating near the x-axis and thus take
the yz-plane to be the array plane. The origin is taken to be at the center of the array. As noted earlier,
the estimates of θ and φ are coupled for this choice. Numerically, the estimates of θ and φ are found to be
uncoupled from the estimates of l, ς2, and SNR. However we find, again numerically, that placing the center
of the array at the origin is no longer a sufficient condition for the estimates of φ and θ to decouple from the
estimates of r and χ: a symmetric array configuration such as a rectangular grid with mirror symmetry in
y about the origin and mirror symmetry in z about the origin must be used, though the stronger condition
of uniform spacing is not necessary. The results are independent of the value of χ. (This is expected as the
value of the source phase should not effect the estimates of the other parameters. Close inspection of the
second term of Eq. (40) reveals that its dependence in the FI should cancel.) The estimates of r, l, ς2, and
SNR are all coupled.

3.5 Spherical Wave

For the spherical-wave analysis, we again assume that the wave is propagating near the x-axis, take the
array plane to be yz-plane, and take the origin to be at the array center. Numerically, we find: the estimates
of φ, θ, r and χ are all coupled; the estimates of φ and θ are uncoupled from the estimates of l, ς2, and
SNR0; and the estimates of r, l, ς2, and SNR0 are all coupled. Again, the results are independent of the
value of χ.

4 Results

For both the plane-wave and spherical-wave analyses, the array geometry considered is a 4×4 square grid
with spacing of d. In all figures, d/λ = 0.5. As the CRLB (σ) for M independent and identically distributed
datasets is 1/

√
M times the CRLB for one dataset, all results are presented for M = 1.

4.1 Plane Wave

The values of σφ, σθ, σφ0
, and σθ0 are the same for normal incidence due to symmetry. In Fig. 6, σφ

for normal incidence is plotted as a function of ς2 and l/λ for r/λ = 500 and SNR = 10 dB. A vector von
Kármán turbulence spectrum is used. A peak is evident in σφ at large ς2 and small l/λ. In this region
both Γij and Γmin are approaching their mimimum values as functions of the turbulence parameters. In
fact, in the limit that Γij and Γmin simultaneously approach zero, σ2

φ → ∞ as C → σ2
nIN and µ → 0. For



Figure 6: CRLB of φ for a plane wave as a function of turbulence parameters. Calculation is for normal
incidence, r/λ = 500, SNR = 10 dB, and a vector von Kármán spectrum.

small values of ς2 and l/λ, both Γij and Γmin are approaching the maximum value of 1.0, and hence σ2
φ

is approaching the limit for no turbulence. The behavior for other values of the SNR is similar, with σφ

increasing with decreasing SNR. The corresponding percent difference between σφ calculated with a zero
mean and with a deterministic mean is plotted in Fig. 7. Using a deterministic mean reduces the CRLB.
The largest percent difference occurs for large ς2 and small l/λ. In this region, however, the CRLB is large
and the AOAs cannot be estimated accurately. In the regions where Γmin ≈ 1, the percent difference is
small, though nonzero. In the regions where Γmin ≈ 0, the percent difference is zero, as it should be.

Figure 7: Percent difference of σφ for a plane wave calculated with a zero mean and with a deterministic
mean. Calculation is for normal incidence, r/λ = 500, SNR = 10 dB, and a vector von Kármán spectrum.



Figure 8: CRLB of φ for a plane wave as a function of normalized propagation distance. All curves are for
normal incidence and a vector von Kármán spectrum.

In Fig. 8, σφ for normal incidence is examined as a function of the normalized propagation distance r/λ
for a couple of values of the SNR, ς2, and l/λ. A vector von Kármán spectrum is used. The points (lines)
correspond to a SNR of 5 dB (10 dB) for every value of r/λ. Though the graph extends to smaller values of
r/λ than are valid for the turbulence model, it is useful to see the limiting behavior of our model. [Recall
the limits given in Sects. 2.1–2.2. In particular, the approximations in Eqs. (13, 14, 18–20) must hold.] For
ς2 = 10−6 and r/λ . 400, σφ is limited by the SNR. As r/λ increases, σφ is driven primarly by the values
of the turbulence parameters, in particular, the index-of-refraction variance. The corresponding percent
difference of σφ calculated with a zero mean and with a deterministic mean is shown in Fig. 9.

Figure 9: Percent difference of σφ for a plane wave calculated with a zero mean and with a deterministic
mean as a function of normalized propagation distance. All curves are for normal incidence and a vector von
Kármán spectrum.
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Figure 10: CRLB of φ for a spherical wave as a function of turbulence parameters. Calculation is for normal
incidence, r/λ = 500, SNR0 = 10dB at R0/λ = 500, and a vector von Kármán spectrum.

All plots presented have been for normal incidence. The results for other values of φ and θ are similar. As
φ and θ increase, σφ and σθ increase. The angular dependence of σφ and σθ is discussed in Refs. [22, 23] for
the same array geometry that is considered here. Of particular interest is the coupling ζφθ. In Refs. [22, 23],
ζφθ is found to be the same as for the no turbulence case:

ζφθ =
sin2 φ sin2 θ

cos2 θ + sin2 φ sin2 θ
≈ φ2θ2 − 1

3
φ4θ2 +

2
3
φ2θ4 , (52)

regardless of the the value of r/λ, d/λ, SNR, l/λ, or ς2, and regardless of the von Kármán spectrum used.
The coupling is weak: for φ, θ ≤ 15◦, ζφθ ∼ 10−3.

A vector von Kármán spectrum was considered in Figs. 6–9. The analogous results using a scalar von
Kármán spectrum are similar. As a function of turbulence parameters, the shape of the curves are nearly
identical, but the value of σφ is for the most part smaller. The largest difference occurs in the regions where
the MCF for the scalar spectrum is appreciably larger than the MCF for a vector spectrum (refer back to
Fig. 3). More details of the results for a scalar spectrum are given in Refs. [22, 23]. The percent difference of
σφ using a zeromean and a deterministic mean is also smaller; in particular, the peak at large ς2 and small
l/λ is reduced. Again, the use of a deterministic mean reduces the CRLB.

4.2 Spherical Wave

As we are assuming spherical propagation of the wave, the signal-to-noise ratio is now dependent upon
r. Recall that the signal-to-noise ratio evaluated at r = R0 is denoted SNR0.

Again, the values of σφ, σθ, σφ0, and σθ0 are the same at for normal incidence due symmetry. In Fig. 10,
σφ for normal incidence is plotted versus l/λ and ς2 for r/λ = 500 and SNR0 = 10 dB at R0/λ = 500. A
vector von Kármán spectrum is used. The overall values of σφ are smaller than for the plane-wave case.
This is expected as the values of the MCF for a plane wave are smaller than for a spherical (refer back to
Figs. 3–4). The corresponding percent difference of σφ calculated with a zero mean and with a deterministic
mean is given in Fig. 11. As with the plane wave case, the use of a deterministic mean reduces the CRLBs
of the AOAs. The results are similar for other values of the SNR.

In Fig. 12, σφ for normal incidence is plotted versus the normalized propagation distance. Two values of



Figure 11: Percent difference of σφ for a spherical wave calculated with zero mean and with a deterministic
mean as a function of turbulence parameters. Calculation is for normal incidence, r/λ = 500, SNR0 = 10dB
at R0/λ = 500, and a vector von Kármán spectrum.

ς2, l/λ, and SNR0 evaluated at R0/λ = 500 are considered. A vector von Kármán spectrum is used. Again,
the graph is extended to include smaller values of r/λ than are valid for the turbulence model. At small
values of r/λ, we see that σφ is dependent upon the values of the turbulence parameters (particularly ς2)
and is independent of the value of SNR0. Note the difference between the outward spherical propagation
and the plane wave propagation depicted in Fig. 8. The corresponding percent difference of σφ calculated
with a zero mean and with a deterministic mean is given in Fig. 13.

Again, only the results for normal incidence have been shown. For other values of φ and θ, the results are
similiar and σφ and σθ increase with increasing φ and θ. At φ = θ = 0, the coupling between the estimates
of φ and θ and the estimates of r and χ is zero. At r/λ = 500 and l/λ = 10, we find that for φ, θ ≤ 15◦:
ζφ r/λ and ζθ r/λ are on the order of 10−9 for ς2 = 10−6, and on the order of 10−11 for ς2 = 10−4; ζφχ and
ζθχ are on the order of 10−9 for ς2 = 10−6, and on the order of 10−20 for ς2 = 10−4; and ζφθ is on the order
of 10−3. Therefore, the coupling between the estimates of φ and θ and estimates of χ and r/λ are negigible
for these cases. Moreover, as r/λ increases, these couplings rapidly approach zero. Reference [24] addresses
the angular dependence and couplings in more detail.

As with the plane wave case, the results for a scalar von Kármán spectrum are very similar to those for
a vector spectrum. The CRLBs of the AOAs are smaller for a scalar spectrum. The use of a deterministic
mean reduces the CRLBs of the AOAs, though percent difference is not as pronounced as for the vector
spectrum.

5 Conclusions

The performance bounds of acoustic arrays operating in atmospheric turbulence with fluctuations de-
scribed by a von Kármán spectrum have been examined. This analysis features four main improvements
upon earlier work: (1) The performance bounds have been generalized to weak as well as strong scattering.
(2) Multiple unknowns such as the propagation distance of the wavefront, turbulence parameters, phase of
the source, and signal-to-noise ratio have been incorporated. (3) AOA estimates for three-dimensional prob-
lems (i.e., two bearing angles) have been considered. (4) A multivariate analysis for an incident spherical



Figure 12: CRLB of φ for a spherical wave as a function of normalized propagation distance. Calculation is
for normal incidence, SNR0 evaluated at R0/λ = 500, and a vector von Kármán spectrum.

wave has been developed in addition to that for an incident plane wave.

The primary interest was to analyze the Cramer-Rao lower bounds of the angles of arrival. For an incident
plane wave, we have found that an appropriate choice of coordinate system and array geometry leads to
the decoupling of the estimates of the AOAs from the estimates of the other parameters: the normalized
propagation distance (r/λ), SNR, turbulence parameters (l/λ and ς2), and phase angle of the source (χ). In
order to remain consistent with the small-angle approximation, we had to choose a coordinate system that

Figure 13: Percent difference of σφ for a spherical wave calculated with a zero mean and with a deterministic
mean as a function of normalized propagation distance. Calculation is for normal incidence, SNR0 evaluated
at R0/λ = 500, and a vector von Kármán spectrum.
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resulted in the coupling of the estimates of the azimuth and zenith; the coupling, however, was small. For
large values of the index-of-refraction variance and moderate to small values of the normalized length scale,
we have found that the CRLBs of the AOAs increase significantly at large propagation distances. However,
for smaller values of the index-of-refraction variance and normalized propagation distance, the SNR is the
limiting factor.

For an incident spherical wave, we have found that the estimates of the AOAs are coupled to the estimates
of the normalized propagation distance, the phase angle of the source, and to one another. The estimates
of the AOAs are uncoupled from the estimates of the turbulence parameters and SNR0. For the array
geometry considered, the couplings between the estimates of the AOAs and the estimates of source phase
and normalized propagation distance are negigible, and the coupling of the estimates of the azimuth and
elevation is weak. For small values of the normalized propagation distance, the CRLBs of the AOAs are
dependent upon turbulence parameters and independent of SNR0.

We have found that for both a plane wave and a spherical wave, the use of a deterministic mean reduces
the CRLBs of the AOAs from that calculated with a zero mean. The effect is more prevelant for a vector von
Kármán spectrum than for a scalar. However, the largest percent difference occurs in the regions where the
CRLBs are large, and hence the AOAs cannot be well estimated. Therefore, for this analysis the inclusion of
a deterministic mean is not very significant. However, for other models of the MCF, the percent difference
may be more significant, and thus a deterministic mean should be considered.

The results of this analysis demonstrate that scattering by atmospheric turbulence significantly affects
the performance of acoustic sensor arrays. In order to understand and circumvent limitations on Army
acoustical tracking systems, it is necessary to predict the performance of acoustic sensor arrays for various
atmospheric conditions. This analysis clearly demonstrates the atmospheric conditions that are unfavorable
for accurate acoustical tracking. While only a single array with a simple geometry was considered in this
analysis, the results indicate that the effects of atmospheric turbulence should be included in performance
bounds calculations for other more complicated systems as well.

This analysis would benefit from an improved model of the second moment for oblique incidence. Future
efforts should attempt to incorporate the additional phenomena of ground reflections and refraction by
atmospheric wind and temperature gradients. These phenomena will likely have a considerable impact on
the ability to estimate the elevation. Numerical techniques will be required to model these effects.
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